Molecular dissection of arginyltransferases guided by similarity to bacterial peptidoglycan synthases.

نویسندگان

  • Reena Rai
  • Arcady Mushegian
  • Kira Makarova
  • Anna Kashina
چکیده

Post-translational protein arginylation is essential for cardiovascular development and angiogenesis in mice and is mediated by arginyl-transfer RNA-protein transferases Ate1-a functionally conserved but poorly understood class of enzymes. Here, we used sequence analysis to detect the evolutionary relationship between the Ate1 family and bacterial FemABX family of aminoacyl-tRNA-peptide transferases, and to predict the functionally important residues in arginyltransferases, which were then used to construct a panel of mutants for further molecular dissection of mouse Ate1. Point mutations of the residues in the predicted regions of functional importance resulted in changes in enzymatic activity, including complete inactivation of mouse Ate1; other mutations altered its substrate specificity. Our results provide the first insights into the mechanisms of Ate1-mediated arginyl transfer reaction and substrate recognition, and define a new protein superfamily called Dupli-GNAT to reflect its origin by the duplication of the GNAT acetyltransferase domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimeric structure of the cell shape protein MreC and its functional implications.

The bacterial actin homologue MreB forms helical filaments in the cytoplasm of rod-shaped bacteria where it helps maintain the shape of the cell. MreB is co-transcribed with mreC that encodes a bitopic membrane protein with a major periplasmic domain. Like MreB, MreC is localized in a helical pattern and might be involved in the spatial organization of the peptidoglycan synthesis machinery. Her...

متن کامل

Elongated Structure of the Outer-Membrane Activator of Peptidoglycan Synthesis LpoA: Implications for PBP1A Stimulation

The bacterial cell envelope contains the stress-bearing peptidoglycan layer, which is enlarged during cell growth and division by membrane-anchored synthases guided by cytoskeletal elements. In Escherichia coli, the major peptidoglycan synthase PBP1A requires stimulation by the outer-membrane-anchored lipoprotein LpoA. Whereas the C-terminal domain of LpoA interacts with PBP1A to stimulate its ...

متن کامل

Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-m...

متن کامل

Regulation of peptidoglycan synthesis by outer membrane proteins

Growth of the mesh-like peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape, and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell, but precise spatiotemporal control over this process is poorly understood. We demonstrate that P...

متن کامل

Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli.

To withstand the high intracellular pressure, the cell wall of most bacteria is stabilized by a unique cross-linked biopolymer called murein or peptidoglycan. It is made of glycan strands [poly-(GlcNAc-MurNAc)], which are linked by short peptides to form a covalently closed net. Completely surrounding the cell, the murein represents a kind of bacterial exoskeleton known as the murein sacculus. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EMBO reports

دوره 7 8  شماره 

صفحات  -

تاریخ انتشار 2006